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ABSTRACT – The most important factor in predicting the risk of injury or death in a frontal crash is the crash severity, which is 
expressed as the velocity change, or delta-V, experienced by the vehicle during the crash.  The National Automotive Sampling 
System (NASS) is the largest database in the world linking injury outcomes with delta-Vs, which are obtained from field 
reconstructions.  The accuracy of these reconstructions was assessed by analyzing 228 NASS cases involving single event frontal 
crashes in which the vehicle’s frontal delta-V was also measured directly by an onboard event data recorder (EDR).  Compared to 
the EDR measurements, the delta-V values in NASS averaged 19% lower with a standard deviation of 8.6 kph.  The effect of this 
error on injury and fatality risk calculations was investigated using NASS data from 1997 – 2006 for frontal crashes with a 
known delta-V.  Injury and fatality risk functions were calculated by curve fitting the distributions of the delta-V values 
associated with injury and fatality incidence normalized by the fitted crash exposure distribution.  Individual delta-V values were 
linearly scaled to correct for the bias error, and the delta-V distributions were corrected for scatter error using a numerical 
deconvolution technique.  Correcting for delta-V bias error shifted the calculated risk curves to the right and correcting for delta-
V scatter error shifted the curves back to the left, but to a lesser extent.  The effects of occupant age, gender, and belt use on 
injury and fatality risk were substantial. 

__________________________________

INTRODUCTION 

The probability of injury or death in a crash is 
dependent on many factors, including the nature and 
severity of the crash, whether the occupant is wearing 
a seatbelt, and the injury tolerance of the occupant, 
which is related to age, size, and gender.  However, 
crash severity expressed as the change in velocity, or 
delta-V, experienced by the vehicle during the 
collision phase of a crash explains nearly all of the 
variation in the injury outcome of field crashes 
[Malliaris et al., 1997].  The National Automotive 
Sampling System / Crashworthiness Data System 
(NASS-CDS) is uniquely well-suited to the task of 
calculating injury and fatality risk because it links 
injury outcomes with a variety of crash and occupant 
characteristics, including delta-V.     

Delta-V data in NASS are obtained from field 
reconstructions using the WinSMASH software 
[Sharma et al., 2007].  A certain amount of error is 
inherent in field reconstructions, because collisions in 
the real world seldom match standard laboratory 
crash test configurations.  Due to the recent 
introduction of significant numbers of event data 
recorders (EDRs) into the vehicle fleet, the 
magnitude of the errors in the NASS delta-V data can 
now be quantified.  In an ongoing study in which 
EDR data have been retrieved from vehicles involved 
in NASS cases, it has been reported that the delta-V 

values in NASS underestimate the delta-V recorded 
by the EDR by an average of approximately 20%, 
with a significant amount of scatter [Gabler et al., 
2004; Niehoff et al., 2006].  The objective of the 
present study was to formulate injury and fatality risk 
curves for frontal crashes that correct for these errors 
in the NASS delta-V data. 

METHODS 

EDR data from 228 vehicles that had been involved 
in crashes investigated in the NASS-CDS database 
between 2000 and 2005 were gathered as part of an 
ongoing study that has been described in detail by 
Gabler et al. (2004) and Niehoff et al. (2006).  All 
EDR data came from General Motors vehicles.  
Because most current EDRs record only the frontal 
component of the crash pulse, cases were only 
considered if they involved a single event frontal 
crash with a principal direction of force (PDOF) 
between -30 and 30 degrees.  228 such cases were 
found in which the EDR successfully recorded the 
entire crash pulse.   

The error in the NASS delta-V data was quantified by 
comparing the longitudinal delta-V calculated in 228 
NASS cases to the longitudinal delta-V recorded by 
an EDR in the same vehicle.  Differences between 
the two values were attributed to errors in the NASS 
delta-V data.  Two aspects of the NASS delta-V error 
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were quantified: bias error and scatter error.  Both 
types of error were calculated using simple linear 
regression.  The bias error was simply the slope of 
the regression line obtained by a least-squares fit of 
the NASS vs. EDR delta-V data.  In accordance with 
the assumptions of linear regression, the scatter error 
was assumed to be homoscedastic with a normal 
distribution having a mean equal to the fit delta-V 
and a standard deviation given in the regression 
ANOVA table: 
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The assumption that the EDR data were perfectly 
accurate was evaluated by comparing the delta-V 
values obtained from an EDR and laboratory 
accelerometers in 34 frontal crash tests.  The crash 
test data were taken from Niehoff et al. (2005).  A 
similar linear regression analysis was performed on 
the crash test data.  However, in the crash test data, 
the scatter error did not appear to remain constant 
across all delta-V levels, as it did in the NASS data.  
Rather, the scatter error appeared to increase in 
proportion to the delta-V.  This heteroscedasticity 
was modeled by fitting a parabola through the 
squared residual errors of the original regression line: 

222 xcv=σ     (2) 

where cv is the coefficient of variation (standard 
deviation divided by the mean) of the scatter error, 
and x is the delta-V.   

Because bias error is systematic, it can be easily 
corrected by multiplying the delta-V values in NASS 
by the appropriate scaling factor.  Scatter error, on 
the other hand, is random.  It is impossible to correct 
individual delta-V values in NASS for scatter.  
However, it is possible to remove the effect of scatter 
error from distributions of delta-V estimates.  The 
distribution of delta-V values in NASS reflects the 
sum of the true distribution of delta-Vs and the 
distribution of the scatter error.  It can be shown 
mathematically that the distribution of the sum of two 
independent random variables is the convolution of 
each of their distributions.  Therefore, the true 
distribution of crash severities occurring in the field 
can be obtained by deconvolving the scatter error 
from the reported distribution of delta-Vs: 
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where f’ is the distribution of delta-Vs reported in 
NASS, f is the true distribution of delta-Vs (as would 
be measured by EDRs), g is the distribution of scatter 
error, x is delta-V, and z is a dummy variable.  As 
mentioned previously, the scatter error was assumed 
to have a normal distribution such that:   
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The basic idea behind the convolution integral is that 
the population of crashes reported in the NASS 
database at a particular delta-V actually encompasses 
a range of crash severities, some of which were 
actually less severe than the reported delta-V (but the 
reconstruction erred on the high side), and some of 
which were actually more severe than the reported 
delta-V (but the reconstruction erred on the low side).   

The goal of this study was to evaluate how frontal 
crash injury and fatality risk curves would be affected 
by error in the NASS delta-V data, assuming the 
magnitude of bias and scatter error observed in the 
sample of 228 frontal crashes where EDR data were 
available.  To that end, injury and fatality risk curves 
were calculated using NASS data from 1997 – 2006 
in which the most harmful event was a frontal crash 
(PDOF between -30 and 30 degrees) with a known 
delta-V.  Rollovers were excluded.  Only front seat 
occupants of airbag-equipped vehicles (model year 
1995 or later) who were over 18 years old and not 
ejected were studied.  Various subsets of this 
population were studied to examine the effects of 
age, gender, belt use, and airbag deployment.  Each 
NASS/CDS case was multiplied by the weighting 
factors provided in order to obtain national estimates 
and remove biases in the raw data. 

Injury risk was calculated by dividing the number of 
injured occupants by the total number of exposed 
occupants at each delta-V level.  Distributions of 
delta-Vs were modeled using the probability density 
function (pdf) and cumulative distribution function 
(cdf) of a standard Weibull distribution: 
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where α is the shape parameter, β is the scale 
parameter, and x is the delta-V in units of kilometers 
per hour (kph).   

The weighted NASS delta-V data for all occupants 
were sorted and normalized to obtain the cdf of the 
crash severity exposure.  The NASS exposure cdf 
was mathematically manipulated in several ways 
before curve fitting.  First, the delta-V data were 
scaled to correct for the estimated bias error.  Second, 
all delta-Vs below 30 kph in the bias-corrected data 
(24 kph in the original data) were excluded from the 
curve fit.  Because NASS only includes tow-away 
and/or injury crashes, low-severity crashes are 
undersampled.  The reported crash exposure in the 
NASS data appeared to follow a roughly exponential 
distribution at delta-Vs of approximately 30 kph and 
greater.  At this level of crash severity, it is 
reasonable to expect that virtually all vehicles would 
have to be towed from the scene due to damage.  The 
equation form for the Weibull distribution (eq. 6) was 
adjusted to obtain the pdf and cdf over the delta-V 
region of interest θ < x < ∞, where θ = 30 kph (eq. 7 
and 8):   
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Third, the complement of the cdf of the NASS delta-
V exposure data greater than 30 kph (cdfNASSexp) was 
log transformed in order to give greater weight to 
higher severity impacts.   

The true distribution of the delta-V exposure (as 
would be measured by EDRs) was curve fit to the 
form of the adjusted Weibull distribution (eq. 7).  
This true distribution (f), when convolved with the 
distribution of scatter error in the NASS delta-V 
estimates (g) (eq. 4), yielded an estimate for the 
actual distribution of delta-V data in NASS (f’) (eq. 
3).  The convolution was performed over all delta-V 
values, even though the curve fitting only involved 
delta-Vs greater 30 mph.  The α and β coefficients of 
the true delta-V exposure distribution (f) were 
estimated by fitting the log transform of the 
complement of the cdf of the true distribution 
convolved with error (F’expθ) to the log transform of 
the complement of cdf of the NASS delta-V exposure 
data (cdfNASSexp) at each delta-V increment i: 

( ) ( ) iiiNASS Fcdf εθ +′−=− expexp 1ln1ln       (9) 

Because the cdf of the actual NASS exposure data 
was expressed in discrete 1 kph delta-V increments, a 
single data point could represent a small or large 
number of actual cases.  The curve fit of equation (9) 
was therefore performed by minimizing the sum of 
the squared error at each delta-V increment (ει) 
weighted according to the calibrated sample size (nc) 
of the weighted NASS data in that increment.  The 
calibrated sample size is used for data in which 
weighting factors have been applied to increase the 
sample size (Dorofeev and Grant, 2006), and is equal 
to or less than the raw sample size of the data, 
depending on the spread of the weighting factors:   
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where wi is the weighting factor for case i in NASS.  
A multiplier (nexp) was then applied to predict the true 
distribution of exposed occupants in absolute, rather 
than normalized, terms: 
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This multiplier was fit so that after equation (11) was 
convolved with the distribution of scatter error (eq. 
3), the resulting estimate for the number of occupants 
exposed to delta-Vs greater than 30 kph matched the 
actual number of such occupants in NASS.   

Next, a risk curve was optimized so that the predicted 
cumulative distribution of injuries or fatalities 
matched the actual distribution in NASS.  The risk 
function was given the form of standard Weibull 
distribution (eq. 6) with coefficients αrisk and βrisk.  
The risk curve was multiplied by the estimated true 
exposure function (eq. 11) to obtain an estimate of 
the true injury incidence (finc):  
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Equation (12) was convolved with the estimated 
scatter error in the NASS delta-V estimates (eq. 3) 
and then integrated (but not log-transformed) to 
obtain the cumulative number of injured occupants 
expected to be in NASS as a function of delta-V 
(nexpF’inc).  The coefficients of the risk function (αrisk 
and βrisk) were determined by fitting the predicted 
(nexpF’inc) against the actual (cdfNASS inc) cumulative 
number of injured occupants in NASS at each delta-
V level.  The curve fit was accomplished by 



  

minimizing the sum of the squared error at each 
delta-V increment weighted according to the 
calibrated sample size (nc) (eq. 10) of the NASS data 
in that increment, subject to the constraint that the 
total number of injured occupants predicted by the 
risk curve multiplied by the exposure curve had to 
match the total number of injured occupants in the 
NASS sample.  This analysis was performed to 
develop risk curves for two groups of injured 
occupants: those sustaining AIS 3 or greater injury 
plus all fatalities (AIS 3+F) and those sustaining fatal 
injury (F).  The effects of age, gender, belt use, and 
airbag deployment were analyzed using relevant 
subsets of the NASS data.     

Injury and fatal injury risk was also calculated 
nonparametrically simply by dividing the number of 
injured occupants by the number of exposed 
occupants in various delta-V intervals using the 
uncorrected and bias-corrected delta-Vs in the 
weighted NASS data (scatter error cannot be 
corrected nonparametrically).  Errors in the 
calculated proportions (p) were estimated: 

( )
cn
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where nc was the calibrated sample size (eq. 10).  All 
error bars presented in this paper represent 95% 
confidence intervals calculated as ± 1.96σ.   

RESULTS 

In the 34 crash tests reported by Niehoff et al. (2005), 
the delta-V recorded by the EDR was on average 2% 
± 6% higher than the delta-V obtained from 
laboratory instrumentation (Fig. 1).  
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Figure 1.  EDR performance in crash tests. 

In the 228 NASS cases studied, the longitudinal 
delta-V estimates in NASS were on average 19% 
lower than the longitudinal delta-Vs recorded by the 
EDRs (Fig. 2).  In addition, there was substantial 

scatter error (R2 = 0.49, σ = 8.6 kph).  The scatter 
error appeared to be approximately equal at all delta-
V levels. 
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Figure 2.  Comparison of longitudinal delta-V values 
from WinSMASH and the EDR in 228 NASS cases. 

11,483 cases in the 1997 – 2006 NASS data met the 
criteria for this study (non-ejected front seat 
occupants over 18 years old in frontal crashes with a 
known delta-V and no rollover).  After applying the 
weighting factors in the NASS database to each case, 
the total number of occupants represented nationwide 
by this sample was calculated to be 4,464,531.  The 
overall weighted occupant sample was coded as 
mostly belted (89%), evenly split between males and 
females, and heavily skewed towards younger 
occupants (Fig. 3) and lower severity crashes.   
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Figure 3.  Distribution of ages in the NASS sample 
given as averages over a 5-yr span (±2 yrs of label). 

Initial estimates of injury and fatality risk were 
obtained nonparametrically by calculating the 
proportion of injured occupants in various delta-V 
intervals (Fig. 4).  Even in low severity frontal 
crashes, it was common for occupants to sustain at 
least a minor injury (AIS 1+).  At delta-V levels 
associated with FMVSS 208 compliance testing for 
frontal crashes (~ 50 kph), the risk of AIS 2+ injury 
was approximately 50%, the risk of AIS 3+ injury 



 

was approximately 25%, and the risk of fatality was 
approximately 5%.   
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Figure 4.  Comparison of risk curves based on 
uncorrected NASS data.  

To correct the NASS data for bias error, the delta-V 
estimates were multiplied by 1.24, which was the 
reciprocal of the slope of linear regression line fit 
through the EDR vs. NASS delta-V data (Fig. 2).  
The standard deviation of the scatter error obtained 
from the linear regression of the EDR vs. NASS 
delta-V data was also multiplied by 1.24 to 
characterize the scatter error of the bias-corrected 
delta-V data.  This yielded a standard deviation of 
10.7 kph for the bias-corrected NASS delta-V data.   

Correcting for the error in the NASS delta-V data had 
a profound effect on the estimated distribution of 
delta-Vs to which all occupants were exposed.  The 
delta-V exposure in the NASS data was heavily 
skewed towards lower severity impacts.  95% of the 
cases in the uncorrected NASS sample involved 
delta-Vs of 38 kph or less, and only 0.5% of the cases 
involved delta-Vs of 60 kph or more.  The 
distribution of delta-Vs was roughly exponential at 
delta-Vs above 24 kph, with the number of cases 
decreasing by a factor of approximately ten for every 
20 – 25 kph increase in delta-V (Fig. 5).  The bias-
corrected delta-V data contained almost twice the 
number of cases with delta-Vs above 30 kph as the 
original NASS sample.  The proportionate increase in 
cases was even higher at the higher delta-Vs.   

Correcting for scatter error, on the other hand, had 
the opposite effect on the exposure distribution.  
Because the delta-V exposure was so heavily skewed 
towards lower severity crashes, the effect of high end 
error in the lower severity crashes overwhelmed the 
effect of low end error in the higher severity crashes.  
The effect of scatter error, therefore, was to shift the 
exposure distribution towards higher delta-Vs.  
Correcting for scatter error shifted the exposure 
distribution towards lower delta-Vs.  As expected, the 

estimated true distribution of delta-Vs, when 
convolved with the distribution of the scatter error, 
matched the bias-corrected NASS data extremely 
well (Fig. 5).  The number of cases with delta-Vs 
above 30 kph in the estimated true distribution was 
half that of the bias-corrected NASS data and, 
surprisingly, was about equal to the number of such 
cases in the original uncorrected NASS data.  
However, the estimated true distribution of delta-Vs 
predicted that more occupants were exposed to higher 
delta-Vs than were reported in the original NASS 
data. 
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Figure 5.  Distribution of delta-Vs in the NASS 
sample with corrections for bias and scatter error. 

The effect of scatter error on the distribution of delta-
Vs associated with injury or fatality incidence was 
quite minor.  Although the effect of scatter error was 
to flatten out all distributions and make them more 
uniform, this effect was most pronounced in the 
highly skewed exposure distribution.  Both the 
estimated true distribution of delta-Vs associated 
with AIS 3+F injury and the convolution of this 
distribution with the scatter error matched the bias-
corrected NASS data very well (Fig. 6).   
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Risk curves obtained after correcting for bias and 
scatter error in the NASS delta-V data consistently 
fell between the risk curves derived from the original 
and the bias-corrected NASS data.  In general, the 
risk curves derived from the original uncorrected 
NASS data were accurate at lower delta-Vs and 
somewhat conservative at higher delta-Vs (Fig. 7).  
However, the level of certainty in the risk curves 
decreased at higher delta-Vs as the data became 
increasingly sparse.  At uncorrected delta-Vs above 
approximately 64 kph, the nonparametric risk 
estimates often became inconsistent and began to 
diverge from the parametric risk estimates 
substantially (>20% for AIS 3+F injury, >10% for 
fatal injury). 
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Figure 7.  Various distributions of delta-Vs 
associated with AIS 3+F injury. 

Although delta-V was far and away the best predictor 
of occupant injury and fatality, occupant age, gender, 
and belt use also proved to be important predictors.  
The effect of occupant age was especially significant 
for older occupants (> 60 yrs).  Although older 
occupants made up only about 10% of the crash-
involved population, they were more often injured 
and killed, especially in lower severity crashes 
(Figure 8).  After correcting for delta-V bias and 
scatter errors, the estimated risk of AIS 3+F injury 
and fatality for older occupants was correspondingly 
higher than middle-aged (30 – 60 yrs) and younger (< 
30 yrs) occupants (Figure 9).  The effect of older age 
was even more pronounced for fatality risk than AIS 
3+F injury risk.  

As expected, the risk of AIS 3+F injury and fatality 
was higher for unbelted occupants compared to 
belted occupants (Figure 10).  Belt use appeared to 
reduce AIS 3+F injury risk most effectively in lower 
and moderate severity crashes, and reduce the risk of 
fatality most effectively in higher severity crashes.  
Gender appeared to influence the risk of AIS 3+F 
injury, but not the risk of fatality (Figure 11).   
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Figure 8.  Proportion of occupants who were > 60 yrs 
old in the uncorrected weighted NASS data.  
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Figure 9.  Risk of AIS 3+F injury and fatality for 
various age groups based on corrected NASS data.  
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Figure 10.  Risk of AIS 3+F injury and fatality as a 
function of belt use based on corrected NASS data. 

The effect of airbag deployment was investigated and 
deemed to be unimportant in this dataset, primarily 
because the vast majority of vehicles studied were 
equipped with an airbag (except for some earlier 
model vehicles that did not have an airbag on the 
passenger side).  Although 40% of the weighted 
NASS sample involved cases without an airbag 
deployment, these nondeployments occurred 
primarily in lower severity crashes (Figure 12).  In 



 

crashes with a delta-V of roughly 30 kph or greater, 
the airbag reportedly deployed approximately 90% of 
the time.   
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Figure 11.  Risk of AIS 3+F injury and fatality for 
men and women based on corrected NASS data. 
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Figure 12.  Airbag deployment rate as a function of 
delta-V in the uncorrected weighted NASS data. 

It was difficult to evaluate the effect of airbag 
deployment on injury and fatality risk because there 
were few crashes without an airbag deployment at the 
higher delta-V levels where airbags are most 
effective, and the data that did exist were 
inconsistent.  After correcting for delta-V bias and 
scatter error, the risk of AIS 3+F injury was not 
greatly different in crashes with and without an 
airbag deployment, and the risk of fatality was also 
similar regardless of airbag deployment (Figure 13).  
Therefore, airbag deployment was not investigated as 
a separate injury predictor.  The risk curves in the 
present study effectively assume that the airbag did 
deploy in higher severity crashes.   

Additional analyses were conducted on subsets of the 
NASS sample encompassing all possible 
combinations of belt use, age (grouped into three 
intervals: < 30 yrs, 30 – 60 yrs, and > 60 yrs), and 
gender (Appendix).  The results of the subgroup 
analyses showed the same general trends as the 

original analyses on the larger groups (Figs. 7, 9, 10, 
and 11).  Two inconsistencies did emerge.  First, the 
AIS 3+F injury data were inconsistent for unbelted 
middle-aged (30 – 60 yrs) occupants, resulting in risk 
curves that appeared too high at low delta-Vs and too 
low at high delta-Vs.  Second, the fatality risk curves 
for unbelted females were lower than expected. 
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Figure 13.  Risk of AIS 3+F injury and fatality with 
and without airbag deployment based on corrected 

NASS data. 

DISCUSSION 

One of the great strengths of the NASS-CDS 
database is that, unlike the Fatality Analysis 
Reporting System (FARS) or state data compiled 
from police reports, it incorporates crash 
reconstruction information such as the delta-V and 
PDOF.  Although the National Highway Traffic 
Safety Administration (NHTSA) is continually trying 
to improve their WinSMASH algorithm [Sharma et 
al., 2007], some amount of error is inevitable in crash 
reconstruction.  Recently acquired EDR data provide 
a novel way of evaluating the accuracy of the delta-V 
data in the NASS database.  The delta-V recorded by 
an EDR was shown to match the delta-V measured 
by laboratory instrumentation in crash tests with an 
error of only 2% ± 6% based on data reported by 
Niehoff et al. (2005).  Given that vehicle center of 
gravity acceleration recorded in crash tests is itself 
subject to some error, this level of agreement 
between the two measurement systems demonstrates 
excellent accuracy in the EDR data.  Currently, most 
EDRs record only the longitudinal component of 
delta-V, and are therefore only useful in assessing 
delta-V accuracy in frontal crashes.   

In the 228 NASS cases studied, the longitudinal 
delta-V estimates using WinSMASH were on 
average 19% lower than the delta-Vs recorded by the 
EDR.  In addition, the scatter error was substantial (σ 
= 8.6 kph).  The WinSMASH error was similar for 
cars, SUVs, and vans.  Niehoff et al. (2006) found 



  

that WinSMASH delta-V estimates were more 
accurate for pickups.  However, we did not feel the 
evidence was strong enough to justify separating out 
pickups from other vehicle types, so all types of 
vehicles were lumped together in the current analysis.  

The risk curves for the overall dataset are in 
agreement with other recent studies [Augenstein et 
al., 2003], but are lower than comparable curves from 
earlier studies [Evans, 1993; Malliaris et al., 1997], 
probably because the more recent data reflect much 
higher levels of belt use and airbag protection.  The 
present study is unique in accounting for errors in the 
NASS delta-V data.  The specific mathematical 
techniques used in the present study were first 
applied to estimate the risk of concussion in football 
players as a function of head acceleration measured 
by helmet-mounted accelerometers [Funk et al., 
2007].  However, the effect of random delta-V errors 
on the distribution of crashes, injuries, and risk had 
been previously explored by Kullgren and Lie 
(1998).  By introducing random errors into an 
idealized data set, they demonstrated that estimates of 
injury risk derived from erroneous field data could 
substantially underestimate the true risk of injury at a 
particular delta-V.  The present study confirms that 
hypothesis, provides additional mathematical 
development of the theory, and applies the theory to 
real world data.   

The bias and scatter error in the NASS delta-V 
estimates had the most significant effect on the 
calculated distribution of delta-Vs defining the 
exposure of crash-involved occupants.  Because the 
exposure distribution was so heavily skewed towards 
lower delta-Vs, shifting the distribution to the right 
24% to correct for the bias error caused the exposure 
at any particular delta-V to rise by several hundred 
percent.  On the other hand, the scatter error in the 
delta-V estimates also tended to shift the exposure 
distribution to the right, again because the exposure 
distribution was so heavily skewed towards lower 
delta-Vs.  After correcting the delta-V data for bias, 
the high end scatter error from the lower delta-Vs 
dominated the low end scatter error from the higher 
delta-Vs.  Therefore, correcting for scatter error 
caused the exposure curve to shift back to the left.   

The effect of random scatter error on the distributions 
of delta-Vs associated with the incidence of injury or 
fatality was relatively minor, because the incidence 
distributions were not as heavily skewed as the 
exposure distributions.  The theory predicts that 
incidences of injury and fatality at very low delta-Vs 
are more likely to be cases where the delta-V is 
underestimated.  A review of the ten lowest delta-V 

fatality cases revealed two severe vertical impacts not 
accounted for in the frontal delta-V estimates, three 
cases where the investigator noted that the delta-V 
appeared low, and two apparent heart attacks 
preceding the crash, all of which lends anecdotal 
support to the theory.  Nevertheless, most of the 
effect of delta-V error on the calculated risk curves 
was due to the effect of the error on the exposure 
distributions, rather than incidence distributions.  It 
was indeed serendipitous that the two aspects of the 
delta-V error (bias and scatter) offset each other to 
some extent.  As a result, the influence of rather 
substantial bias and scatter errors in the NASS delta-
V data on the calculated injury and fatality risk 
curves was not as large as expected.   

Although the technique used in the present study to 
correct for delta-V error in NASS yielded interesting 
and fruitful results, it created some difficulties in 
analyzing covariates.  The addition of random error 
to a data set intrinsically causes some information to 
be irretrievably lost.  As a result, the technique 
presented here only allowed random error to be 
corrected in a distribution of delta-Vs, not in 
individual cases.  Individual cases could conceivably 
be corrected for scatter error by reassigning a delta-V 
value to each case from the corrected distribution by 
matching its percentile value from the original 
distribution.  That approach would create a corrected 
dataset that could be analyzed using conventional 
statistical techniques such as logistic regression.  
However, the approach that was chosen in this study 
was to analyze subgroups of the dataset separately to 
look at various combinations of covariates, which 
had to be treated as discrete, rather than continuous, 
variables (Appendix).  This approach neither fit nor 
forced any interrelationships among the various 
covariates of delta-V, belt use, age, and gender. 

The present analysis was parametric, which had 
certain advantages and limitations.  For example, the 
Weibull form chosen for this study is simple (only 
two parameters), passes through the origin, has good 
shape flexibility, and forces the calculated risk 
function to assume a monotonically increasing form.  
However, it cannot match large inflections and 
inconsistencies in the NASS data that sometimes 
occur due to small sample sizes and uneven 
weighting factors.  For that reason, it is always 
valuable to compare risk curve fits and nonparametric 
risk estimates to determine when the data have 
become too sparse to be reliable.  In spite of having a 
dataset encompassing ten years worth of NASS data, 
many of the nonparametric risk estimates appear to 
become consistent at delta-Vs above 64 kph (Figs. 4 
and 7).  The problem was more pronounced for risk 



 

curves derived from smaller subsets of the data, 
usually involving older or unbelted occupants.   

Lastly, the error-correction technique presented here 
was limited by imperfect modeling of the NASS 
delta-V error.  The assumption that the scatter error 
in the WinSMASH delta-V estimates had a standard 
deviation of 8.6 kph across the board at all delta-V 
levels appeared to be the best model for the empirical 
data (Fig. 2).  However, for low severity crashes, this 
assumption predicted that reconstructions could yield 
negative delta-V values, which would never actually 
happen.  Fortunately, the error caused by this 
modeling assumption was negligible, because the 
curve fit of the exposure distribution only involved 
higher delta-Vs (> 30 kph), and the injury and fatality 
incidence distributions contained very few cases at 
low delta-Vs (< 15 kph). 

Researchers should be aware of the fact that the 
delta-V values for frontal crashes in the NASS 
database contain substantial errors that have a 
particularly strong affect on the estimated distribution 
of delta-Vs to which crash-involved occupants are 
exposed.  Correcting for bias error in the delta-V 
estimates is simple, but yields risk curves that 
underestimate the true risk of injury or fatality.  
Correcting for scatter error in the delta-V estimates 
can be accomplished as described here, but the 
technique involves fairly cumbersome mathematics 
and makes the analysis of covariates more difficult.  
If no correction for delta-V error is made, then 
calculated risk curves are likely to be somewhat 
conservative, particularly at higher delta-Vs. 

CONCLUSION 

Recently acquired EDR data from NASS cases 
suggests that the delta-V data in NASS that are used 
as a basis for government policy decisions and 
industry practices contain substantial errors.  In this 
study, delta-V data in individual NASS cases were 
corrected for bias error, and distributions of delta-V 
data were corrected for scatter error using a novel 
numerical deconvolution method.  Injury and fatality 
risk curves for frontal crashes were calculated as a 
function of age, gender, and belt use using the raw 
and corrected NASS delta-V data to demonstrate the 
magnitude of the error.  Fortuitously, the effect of the 
bias error and the effect of the scatter error in the 
NASS delta-V data were offsetting.  In spite of the 
substantial errors in the delta-V estimates in NASS, 
risk curves calculated using uncorrected NASS data 
were generally accurate at low delta-Vs and 
somewhat conservative at higher delta-Vs.   

REFERENCES 

Augenstein J, Perdeck E, Stratton J, et al.  
Characteristics of Crashes that Increase the Risk of 
Serious Injuries.  47th Annual Proceedings 
Association for the Advancement of Automotive 
Medicine, pp. 561 – 576, 2003.  

Dorofeev S and Grant P.  Statistics for Real-Life 
Sample Surveys.  Cambridge University Press, 
2006.  

Evans L.  Driver Injury and Fatality Risk in Two-Car 
Crashes versus Mass Ratioo Inferred Using 
Newtonian Mechanics.  37th Annual Proceedings 
Association for the Advancement of Automotive 
Medicine, pp. 313 – 327, 1993. 

Funk JR, Duma SM, Manoogian SJ, et al.  
Biomechanical Risk Estimates for Mild Traumatic 
Brain Injury.  51st Annual Proceedings Association 
for the Advancement of Automotive Medicine, pp. 
343 – 361, 2007.  

Gabler HC, Hampton C, Hinch J, et al.  Crash 
Severity: A Comparison of Event Data Recorder 
Measurements with Accident Reconstruction 
Estimates.  Society of Automotive Engineers, 
Paper 2004-01-1194, 2004.  

Kullgren R, Lie A.  Vehicle Collision Accident Data 
– Validity and Reliability.  J Traffic Med, Vol. 26, 
No. 3-4, pp 77 – 89, 1998.  

Malliaris AC, Digges KH, DeBlois JH.  
Relationships Between Crash Casualties and Crash 
Attributes.  Society of Automotive Engineers, 
Paper 970393, 1997.    

Niehoff P, Gabler HC, Brophy J, et al.  Evaluation of 
Event Data Recorders in Full Systems Crash Tests.  
19th International Technical Conference on the 
Enhanced Safety of Vehicles, Paper 05-0271, 13 
pp., 2005.  

Niehoff P, Gabler HC.  The Accuracy of 
WinSMASH Delta-V Estimates: The Influence of 
Vehicle Type, Stiffness, and Impact Mode.  50th 
Annual Proceedings Association for the 
Advancement of Automotive Medicine, pp. 73 – 
89, 2006.  

Sharma D, Stern S, Brophy J, et al.  An Overview of 
NHTSA’s Crash Reconstruction Software 
WinSMASH.  20th International Technical 
Conference on the Enhanced Safety of Vehicles, 
Paper 07-0211, 13 pp., 2007.   



  

APPENDIX – Data for all risk curve calculations of NASS delta-V data corrected for bias and scatter error.  The ID 
Code describes the subsample of the 1997 – 2006 NASS dataset.  The first character indicates belt status (B = 
belted, U = unbelted, A = all), the second character indicates age group (Y = < 30 yrs, M = 30 – 60 yrs, O = > 60 
yrs, A = all), and the third character indicates gender (M = male, F = female, A = all).  Both raw (R) and weighted 
(W) sample sizes are given.  α and β coefficients are for a Weibull distribution (eq. 11 for the exposure distribution 
and eq. 6 for the risk function) where x is delta-V in units of kilometers per hour. 

 All Occupants AIS 3+F Fatal 
ID Sample size Exposure Sample size Risk Sample size Risk 

Code R W α β nexp R W α β R W α β 
AAA 11483 4646531 0.66 3.35 760379 1289 107722 3.33 80.5 240 10601 4.89 117 
BAA 9397 4085206 0.60 2.15 549439 805 67357 3.38 84.1 118 4337 4.54 140 
UAA 1962 506307 1.17 18.2 194344 465 39030 2.54 82.9 114 5434 5.39 97.0 
AYA 4449 1836122 0.81 6.70 379996 410 33689 3.61 86.9 65 2903 5.38 123 
AMA 5596 2341731 0.57 1.75 319070 631 58104 3.19 77.5 95 3821 4.85 123 
AOA 1438 468678 0.92 9.91 82617 248 15929 3.64 66.5 80 3877 4.92 85.7 
AAM 5913 2283623 0.74 5.31 461638 653 52576 3.36 85.6 150 6759 4.83 117 
AAF 5560 2358444 0.60 2.05 298965 635 55121 3.42 72.4 90 3841 5.04 115 
BYA 3440 1569771 0.71 4.19 260713 222 21688 3.42 93.4 15 659 4.80 171 
BMA 4702 2077813 0.51 0.90 230624 401 34782 3.31 81.2 48 1756 4.97 134 
BOA 1255 437622 1.19 14.4 73223 182 10887 3.93 66.6 55 1921 5.48 85.3 
BAM 4617 1971408 0.66 3.35 315950 360 26986 3.61 89.3 65 2706 4.82 132 
BAF 4773 2110354 0.57 1.49 233087 445 40371 3.43 74.3 53 1631 4.17 154 
UYA 968 259442 1.09 15.5 102056 180 11643 3.61 80.6 46 1975 5.62 102 
UMA 823 218466 1.46 25.3 79424 220 22427 1.62 99.1 43 1504 4.96 108 
UOA 171 28399 0.92 14.9 14358 65 4960 3.19 59.8 25 1956 3.92 80.8 
UAM 1219 301363 1.18 18.5 137005 283 24592 2.47 88.9 79 3253 4.57 109 
UAF 742 204933 1.05 15.7 55727 182 14438 2.69 71.8 35 2181 6.91 84.9 
AYM 2408 921923 0.86 8.71 230211 227 16675 4.53 81.9 45 2131 4.93 130 
AYF 2039 911315 0.78 5.16 141984 183 17014 3.21 86.1 20 772 6.36 111 

AMM 2798 1145857 0.66 3.27 191359 319 29495 2.97 86.6 70 2962 5.32 108 
AMF 2791 1194305 0.50 0.86 129543 311 28584 3.50 68.1 25 859 4.20 161 
AOM 707 215843 1.06 12.2 46166 107 6406 3.96 68.8 35 1667 4.88 87.4 
AOF 730 252824 0.80 7.57 36439 141 9523 3.39 63.4 45 2210 4.90 84.6 
BYM 1757 761200 0.72 4.99 140792 102 7970 4.61 87.0 9 412 4.42 187 
BYF 1681 805687 0.75 4.33 117665 120 13718 3.26 86.1 6 247 5.07 157 

BMM 4702 2077813 0.51 0.90 230624 401 34782 3.31 81.2 48 1756 4.97 134 
BMF 2439 1066263 0.45 0.45 98311 220 20815 3.49 69.8 17 602 4.13 168 
BOM 602 199218 1.14 13.5 40739 77 5049 4.17 68.3 25 1140 6.60 78.3 
BOF 653 238404 1.25 15.4 32267 105 5838 3.70 64.38 30 782 4.43 98.6 
UYM 629 157290 1.08 15.6 79390 122 8440 4.13 77.41 34 1479 4.78 113 
UYF 339 102152 1.19 16.3 22779 58 3204 2.40 102 12 495 12.5 75.3 

UMM 493 129448 1.37 23.0 49856 131 14796 1.46 112 35 1246 4.86 103 
UMF 330 89018 1.43 24.2 27575 89 7631 2.28 74.5 8 257 4.70 130 
UOM 97 14626 0.80 8.15 5924 30 1357 2.84 75.2 10 528 2.17 154 
UOF 73 13763 1.07 24.7 8081 35 3603 2.64 57.6 15 1428 5.55 73.5 

 


